Educational Web
About
Recently Visited Slides
Courses
Cs 173
Cs 225
Cs 410
Cs 510
Chem 101
Chem 102B
Chem 104B
Ece 101
Ece 428
Ece 486
Ece220
Math220
Math285
Math347
Math 415
Phys101
Phys102
Phys212
Phys214
Phys406
Lectures
01 7 1 Overview Text Mining And Analytics Part 1 Tm 3 Overview
01 8 1 Syntagmatic Relation Discovery Entropy Tm 9 Syn Relation
01 9 1 Probabilistic Topic Models Mixture Of Unigram Language Models Tm 17 Mixture Model
01 10 1 Text Clustering Motivation Tm 22 Clustering
01 11 1 Text Categorization Discriminative Classifier Part 1 Tm 31 Text Cat Discrim Part1
01 12 1 Opinion Mining And Sentiment Analysis Latent Aspect Rating Analysis Part 1 Tm 38 Sentiment Lara Part1
01 Course Introduction Video 410Dso Intro
01 Lesson 1 1 Natural Language Content Analysis 1.1 Tr Natural Language Content Analysis
01 Lesson 2 1 Vector Space Model Improved Instantiation 2.1 Tr Vector Space Model Improve Instantiation
01 Lesson 3 1 Evaluation Of Tr Systems 3.1 Evaluation Of Tr Systems
01 Lesson 4 1 Probabilistic Retrieval Model Basic Idea 4.1 Probabilistic Retrieval Model Basic Idea
01 Lesson 5 1 Feedback In Text Retrieval 5.1 Feedback In Text Retrieval
01 Lesson 6 1 Learning To Rank Part 1 Optional 6.1 Learning To Rank
02 7 2 Overview Text Mining And Analytics Part 2 Tm 3 Overview 1
02 8 2 Syntagmatic Relation Discovery Conditional Entropy Tm 10 Cond Entropy
02 9 2 Probabilistic Topic Models Mixture Model Estimation Part 1 Tm 18 Mixture Model Est
02 10 2 Text Clustering Generative Probabilistic Models Part 1 Optional Tm 23 Clustering Gen Model Part1
02 11 2 Text Categorization Discriminative Classifier Part 2 Optional Tm 32 Text Cat Discrim Part2
02 12 2 Opinion Mining And Sentiment Analysis Latent Aspect Rating Analysis Part 2 Tm 39 Sentiment Lara Part2
02 Lesson 1 2 Text Access 1.2 Tr Text Access
02 Lesson 2 2 Tf Transformation 2.2 Tr Tf Transformation
02 Lesson 3 2 Evaluation Of Tr Systems Basic Measures 3.2 Evaluation Of Tr Systems Basic Measures
02 Lesson 4 2 Statistical Language Model 4.2 Statistical Language Models
02 Lesson 5 2 Feedback In Vector Space Model Rocchio 5.2 Feedback In Vector Space Model Rocchio
03 7 3 Natural Language Content Analysis Part 1 Tm 4 Nlp
03 8 3 Syntagmatic Relation Discovery Mutual Information Part 1 Tm 11 Mutual Info Corrected
03 9 3 Probabilistic Topic Models Mixture Model Estimation Part 2 Tm 18 Mixture Model Est 1
03 10 3 Text Clustering Generative Probabilistic Models Part 2 Optional Tm 24 Clustering Gen Model Part2
03 11 3 Text Categorization Evaluation Part 1 Tm 33 Text Cat Eval Part1
03 12 3 Text Based Prediction Tm 40 Prediction
03 Lesson 1 3 Text Retrieval Problem 1.3 Tr Text Retrieval Problem
03 Lesson 2 3 Doc Length Normalization 2.3 Tr Doc Length Normalization
03 Lesson 3 3 Evaluation Of Tr Systems Evaluating Ranked Lists Part 1 3.3 Evaluation Of Tr Systems Evaluating Ranked Lists Part 1
03 Lesson 4 3 Query Likelihood Retrieval Function 4.3 Query Likelihood Retrieval Function
03 Lesson 5 3 Feedback In Text Retrieval Feedback In Lm 5.3 Feedback In Language Models For Retrieval
04 7 4 Natural Language Content Analysis Part 2 Tm 4 Nlp 1
04 8 4 Syntagmatic Relation Discovery Mutual Information Part 2 Tm 11 Mutual Info Corrected 1
04 9 4 Probabilistic Topic Models Expectation Maximization Algorithm Part 1 Tm 19 Cond Entropy
04 10 4 Text Clustering Generative Probabilistic Models Part 3 Optional Tm 25 Clustering Gen Model Part3
04 11 4 Text Categorization Evaluation Part 2 Tm 34 Text Cat Eval Part2
04 12 4 Contextual Text Mining Motivation Tm 41 Contextual
04 Lesson 1 4 Overview Of Text Retrieval Methods 1.4 Tr Overview Text Retrieval Methods
04 Lesson 2 4 Implementation Of Tr Systems 2.4 Implementation Of Tr Systems
04 Lesson 3 4 Evaluation Of Tr Systems Evaluating Ranked Lists Part 2 3.4 Evaluation Of Tr Systems Evaluating Ranked Lists Part 2
04 Lesson 4 4 Statistical Language Model Part 1 4.4 Smoothing Of Language Model
04 Lesson 5 4 Web Search Introduction Web Crawler 5.4 Web Search
04 Lesson 6 4 Future Of Web Search 6.4 Future Web Search
05 7 5 Text Representation Part 1 Tm 5 Textrep
05 8 5 Topic Mining And Analysis Motivation And Task Definition Tm 12 Topic Mining Task
05 9 5 Probabilistic Topic Models Expectation Maximization Algorithm Part 2 Tm 19 Cond Entropy 1
05 10 5 Text Clustering Similarity Based Approaches Tm 26 Clustering Similarity
05 11 5 Opinion Mining And Sentiment Analysis Motivation Tm 35 Sentiment
05 12 5 Contextual Text Mining Contextual Probabilistic Latent Semantic Analysis Tm 42 Cplsa
05 Lesson 1 5 Vector Space Model Basic Idea 1.5 Tr Vector Space Model Basic Idea
05 Lesson 2 5 System Implementation Inverted Index Construction 2.5 System Implementation Inverted Index Construction
05 Lesson 3 5 Evaluation Of Tr Systems Multi Level Judgements 3.5 Evaluation Of Tr Systems Multi Level Judgements
05 Lesson 4 5 Statistical Language Model Part 2 4.5 Smoothing Of Language Model
05 Lesson 5 5 Web Indexing 5.5 Web Indexing
05 Lesson 6 5 Recommender Systems Content Based Filtering Part 1 6.5 Recommender Systems Content Based Filtering
06 7 6 Text Representation Part 2 Tm 5 Textrep 1
06 8 6 Topic Mining And Analysis Term As Topic Tm 13 Term As Topic
06 9 6 Probabilistic Topic Models Expectation Maximization Algorithm Part 3 Tm 19 Cond Entropy 2
06 10 6 Text Clustering Evaluation Tm 27 Clustering Eval
06 11 6 Opinion Mining And Sentiment Analysis Sentiment Classification Tm 36 Sentiment Method
06 12 6 Contextual Text Mining Mining Topics With Social Network Context Tm 43 Netplsa
06 Lesson 1 6 Vector Space Retrieval Model Simplest Instantiation 1.6 Tr Vector Space Model Simplest Instantiation
06 Lesson 2 6 System Implementation Fast Search 2.6 System Implementation Fast Search
06 Lesson 3 6 Evaluation Of Tr Systems Practical Issues 3.6 Evaluation Of Tr Systems Practical Issues
06 Lesson 4 6 Smoothing Methods Part 1 4.6 Smoothing Methods Jelinek Mercer And Dirichlet Prior
06 Lesson 5 6 Link Analysis Part 1 5.6 Link Analysis
07 7 7 Word Association Mining And Analysis Tm 6 Word Relation Corrected
07 8 7 Topic Mining And Analysis Probabilistic Topic Models Tm 14 Topic Model
07 9 7 Probabilistic Latent Semantic Analysis Plsa Part 1 Tm 20 Plsa
07 10 7 Text Categorization Motivation Tm 28 Text Cat
07 11 7 Opinion Mining And Sentiment Analysis Ordinal Logistic Regression Optional Tm 37 Sentiment Ordinal
07 12 7 Contextual Text Mining Mining Causal Topics With Time Series Supervision Tm 44 Causal
07 Lesson 4 7 Smoothing Methods Part 2 4.7 Smoothing Methods Jelinek Mercer And Dirichlet Prior
07 Lesson 6 7 Recommender Systems Collaborative Filtering Part 1 6.7 Recommender Systems Collaborative Filtering
08 7 8 Paradigmatic Relation Discovery Part 1 Tm 78 Para Relation
08 8 8 Probabilistic Topic Models Overview Of Statistical Language Models Part 1 Tm 15 Language Model
08 9 8 Probabilistic Latent Semantic Analysis Plsa Part 2 Tm 20 Plsa 1
08 10 8 Text Categorization Methods Tm 29 Text Cat Methods
08 12 8 Summary For Exam 2 Tm 45 Summary
09 7 9 Paradigmatic Relation Discovery Part 2 Tm 78 Para Relation 1
09 8 9 Probabilistic Topic Models Overview Of Statistical Language Models Part 2 Tm 15 Language Model 1
09 9 9 Latent Dirichlet Allocation Lda Part 1 Tm 21 Lda
09 10 9 Text Categorization Generative Probabilistic Models Tm 30 Text Cat Model
10 8 10 Probabilistic Topic Models Mining One Topic Tm 16 One Topic
10 9 10 Latent Dirichlet Allocation Lda Part 2 Tm 21 Lda 1
10 Lesson 6 10 Summary For Exam 1 6.10 Course Summary
Feedback
CS 173
CS 225
CS 410
CS 510
Chem 101
Chem 102B
Chem 104B
ECE 101
ECE 428
ECE 486
ECE220
MATH220
MATH285
MATH347
Math 415
PHYS101
PHYS102
PHYS212
PHYS214
PHYS406
X
To find explanations of any text on the slide, please highlight it (click and hold, then drag your mouse) and then click on the explain button.
Sorry, no results found.
Cs 410
Lecture Video
Cs 410 05_10-5-Text-Clustering-Similarity-Based-Approaches_tm-26-Clustering-Similarity Slide0
This Lecture
All Lectures in CS 410
TextBook for CS 410
Related slides
Cs 410 : 01 10 1 Text Clustering Motivation Tm 22 Clustering Slide0
Cs 410 : 06 10 6 Text Clustering Evaluation Tm 27 Clustering Eval Slide0
Cs 410 : 03 10 3 Text Clustering Generative Probabilistic Models Part 2 Optional Tm 24 Clustering Gen Model Part2 Slide0
Cs 410 : 02 10 2 Text Clustering Generative Probabilistic Models Part 1 Optional Tm 23 Clustering Gen Model Part1 Slide0
Cs 410 : 04 10 4 Text Clustering Generative Probabilistic Models Part 3 Optional Tm 25 Clustering Gen Model Part3 Slide0
Cs 410 : 08 10 8 Text Categorization Methods Tm 29 Text Cat Methods Slide0
Cs 410 : 07 10 7 Text Categorization Motivation Tm 28 Text Cat Slide0
Cs 410 : 02 11 2 Text Categorization Discriminative Classifier Part 2 Optional Tm 32 Text Cat Discrim Part2 Slide0
Cs 410 : 01 11 1 Text Categorization Discriminative Classifier Part 1 Tm 31 Text Cat Discrim Part1 Slide0
Cs 410 : 09 10 9 Text Categorization Generative Probabilistic Models Tm 30 Text Cat Model Slide0